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1. Introduction.

It is well known that point process methods can be applied effectively to

study certain types of problems in statistical extreme value theory. Consider

a strictly stationary sequence of random variables {rp indexed by the set of

integers I=Z. One can define a number of interesting point processes in one

dimension by recording the positions where "extreme values" occur. For

example, an extremal process (cf. Dwass [4] and Lamperti [9]) typically is one

that records the indices (properly normalized) at which record values of

1, 2... occur, and an exceedance point process considered by Leadbetter [11]

consists of the set of points (J/n: f >Un , J=l.....n} where (un} is a suitable

sequence of constants. For this type of processes, Poisson or compound Poisson

* convergence results (cf. [7]. E.-1 can often be derived under suitable mixing

conditions.

It is also useful to consider certain point processes in two dimensions in

this context. A number of authors studied the point process "n consisting of

the points (j/n.an U-b )). jEl. where a >0, b are constants such that
n nt n n

P{ max .(a x + b } converges weakly to some nondegenerate distribution
li~n - n n

function G(x). In this connection. Poisson convergence of Tn was first

established by Pickands [17] for i.i.d. {E.} (cf. also Resnick [18]), Adler [1]

studied the conditions under which the point process rn performs as one

generated by an i.i.d. sequence when n becomes large, Mori [14] identified all

possible limit laws of in assuming that { .} is a-mixing (also known as

strong-mixing), and Weissman [21] considered the convergence of Rn when the [.

are independent but not identically distributed. Some authors also considered

this type of point processes using nonlinear normalizations; for example, both

Hsing [5] and Leadbetter et al. [12] considered the point process with points

%.,'. w'



* 2

(J/n.u (f ),JFd. where u is such that lim nP[f1 > u (T)] = T for each T>O.
n nj fl-i

Weak convergence results involving these point processes are often conveniently

termed "complete convergence" theorems (cf. [12]) since they usually provide

all the asymptotic distributions of the extreme order statistics with respect

to the relevant normalization procedures. Rootz~n [19] derived complete

convergence results for a special class of processes. Davis and Resnick [3]

demonstrated how information can be extracted from a complete convergence

* theorem and be used for the purpose of statistical inference in general.

We are especially interested in the characterization technique developed

*by Mori [14]. It was shown there that if {f i is a-mixing, then the weak limit

of the point process "n mentioned previously has a specific form which is

determined by a Poisson process and the "local" dependence structure of { }

(Unfortunately the significance of [14] is masked by the presence of several

crucial errors of a typographical nature.) The main purpose of the present

paper is to show that this type of characterization extends to a substantially

larger class of point processes (not necessarily related to extreme value

theory) under reasonably simple and general conditions. In particular. the

main theorem (Theorem 1) of Moni [14] will follow under conditions generalized

in two directions:

(a) a much weaker mixing condition,

(b) using normalizations that are not required to be linear.

However, we attempt to present the salient features of the general theory in a

transparent way so that its potential for other application will be evident to

the reader.

We proceed according to the following outline. In section 2 we review the

concepts of point process theory and some weak convergence results which are

required. Section 3 gives the main characterization method (Theorem 3.6 and

S%



- 3

Corollary 3.7) and section 4 applies the results to give the improved version

I(Theorem 4.5) of Mori [14]. Theorem 1.

Finally our debt to the work of Mori [14] will be obvious and is

acknowledged here rather than by repeated reference.

2. Some Useful Concepts from the Theory of Point Processes.

For clarity, we devote this section to a brief review of certain point

_* process concepts which are particularly relevant to our theory. The reader is

referred to Kallenberg [8] and Matthes et al. [13] for details.

Let S be a locally compact second countable and Hausdorff topological

" -, space. Write P for the Borel a-field, and gA the collection of all bounded

*- _ (relatively compact) sets in Y. Also denote by 9 the class of nonnegative VP

measurable funtions.

A point process i on (S,Y) is a random element in M (or, for clarity.

M(S)), the space of locally finite integer-valued measures on (S,9') equipped

with the vague topology and Borel a-field A. For each feO. write rjf for the
%.'p

random variable Tsfd. If f=lB is the indicator function of a set B in Y.
wIf f=l B fs

write r(B) or TIB instead of il Bfor convenience. The distribution of r is

uniquely determined by its Laplace transform L (f)=Eexp(-rf), fE5.

ri

A point process r is infinitely divisible if for each n=1.2...... there

exist some independent and identically distributed point processes Tin....tin

d
such that Ti = i.. . tin. The following result is important.

Theorem 2.1 (cf. [8]. Theorem 6.1). The relation

(2.1) -log L(f) = f lo0 [l-eP(-pf)]X(d)

defines a unique correspondence between the distributions of all infinitely

divisible point processes qI on (S,Y) and the class of measures X on M\{o} (o

being the null measure) satisfying

.. .
"4- ,' " '-" - -" .". - -', -" "- " . " ". . - , - - . ," -"- . ,' . .-,- .-.- -,-,-,. -. ''''""'.



4if!." 'Mx~o[1-exp(-/pB)]A(dg ) < .BO~.

X is customarily referred to as the canonical measure of rI, and (2.1) the

canonical representation of L 7

Using (2.1), many interesting properties of infinitely divisible point

processes can be conveniently derived. In particular, the following is of

special interest to us.

Lemma 2.2 Let T1 be an infinitely divisible point process on (Sbf) with

canonical measure X. Then

(i) P(Ti(E) = O) = exp (-X{Je,\(o): li(E)>O}), Eef (cf. [13]. Lemma 2.2.5);

k
(ii) for any pairwise disjoint sets E1 ..... Ek in Y with P{(-7(Ei) < oo} > 0,

I1

r(El)-... (Ek) are mutually independent if and only if

X{-IeM\(o}:p(Ei) > 0, p(Ej) > 0) = 0 for all ij satisfying 1 < i < j

_ k (cf. ES], Lemma 7.3 and [13], Proposition 2.2.12).

A sequence of point processes {in} is said to converge in distribution to

some point process T1 if P o Tin converges weakly to P o r1 in the usual sense

(cf. [2]) where, here and hereafter, "o" denotes the composition operation of

functions. The following criterion is convenient.

Theorem 2.3 (cf. [8], Theorem 4.2 and Lemma 4.4). Let i7,T1,i2 .... be point

processes on (S,Y). Then rn converges in distribution to r if and only if

L (f) -. L (f), as n -* 0, for all bounded measurable functions f in 9 with
nT7 Ti

bounded supports and such that rTiseS: f is discontinuous at s) = 0 with

.- probability one.

. .k-.... .... ._ %:" :"'"" % % " % '" " w :° °"" % " % "% " 'a° . -' , ' -' ' 4'.',' '° ' " <- p. *.* "°'



5

3. A Characterization Result for Point Processes on IR x IR',-" +

We now restrict our attention to point processes r9 on IR x IR+ (--,CO) x

(0,-). IR x R' is assumed to be equipped with the usual topology and a-field.I+
Write (M,A) for the space of integer-valued locally finite measures on IR x IR'

as described in Section 2.

First, define two types of transformation which play important roles in

this paper. For each TreR. aER+, let g and h be mappings on IR x IR+ to fl x IR
T a + +

defined by

g (x,y) = (x+ry), h (x.y) = (x/acry), (x.y) e IR x IR.
T C+

' Also, instead of creating different notation, g and h denote the corresponding

set mappings.

For convenience, a point process 77 is said to satisfy (Al), (A2), (A3), or

(A4) if r9 satisfies the respective restrictions described as follows.

(Al) r7og T p for each eR.

" " d
(A2) 7 0 h =n7 for each a eR.

(A3) P(T7([0.1)x(0.e)) > 0} -*0 as -o 0. (or equivalently,

P{(EOl[,1)x(O.)) < -1} = 1, >0).

(A4) For any choice I1 ..... Ik of disjoint intervals of the form [a,b) in R, and

any choice J ..... Jm of intervals of the form [c.d) in R+, the m-dimensional

random vectors (r(lI xJ1) ... (IixJ m)), i=l,2. k. are mutually independent,

where km are arbitrary positive integers

The conditions (Al) - (A4) are quite stringent. As we shall soon see, a

-. point process which satisfies all four of these conditions must be a member of

- a very restricted class. We commence with a simple, yet quite useful lemma.

Lemma 3.1 If a point process r satisfies (Al) and (A2), then n((x)xR) = 0

a.s. and n([R x (y}) = 0 a.s. for each x e R. y e (R+.

04

.... . . . . .. . .. . . ,. . .. .. ., . , , , .. . . . . .. , . . . . . .
' ... : "" - . . .""* . z"z"-.". " ' ' " "- . ..-.'. ..",-.., .,. .-.-. .- '''"", "", .- " ." - ' " "-"- ",



6

Proof. Let b ) a > 0 be arbitrary. If P{rl({x)x[a.b)) > O} > 0 for some x in

1R, then P{ ({x}x[a,b)) > O} > 0 for all x in R by (Al). This contradicts the

requirement that the set {x e IR: P{r({x}x[a,b)) > 0) > 0} must be countable

(cf. [13]. 1.1.5). Hence for each x 6 IR.

P{n({x}xR4) > 0) = lim P{nT({x)x[a,b)) > 0) = 0.
a-gO

The other half can be shown similarly. a

Theorem 3.2 A point process n satisfying (Al) and (A4) is infinitely

divisible.

k
Proof. It suffices to show that 2 77(E ) is infinitely divisible for each

m=l M

* choice of positive integer k and sets E1 .....Ek of the form [a.b)x[c.d) in IR x

k s t.
D~' (cf. [8]. Lemma 6.3). Note that I -9(E) can be written as i j )(E. )m=I i=1 j=l

with Eij = [a ibi) x [cij,dij). i=l .... s, j=l ..... i , where the [a ibi) are

disjoint intervals. Further for each i,j, and each positive integer n,7(Eij})

n e e (b-aiW-1) ((b i- a i)e
can be written as I nI(E.j) with E. j = [a. + n a. + n x

k n s t.
.[cijd ij). Hence for each positive integer n. 2 r(Em) = I. Y, r(E ij)

3'. m=l e - i= j=l
s e

where, by (Al) and (A4). 2 2 =(E e 1,2. n. are independent and
i=1 j-l-

.7 identically distributed random variables. The result follows. 0]

Lemma 3.3 Suppose T1 satisfies the conditions (Al) - (A4). Then for each y >

0, P{n([O,1)x(O.y)) = 0) > 0, and hence, by Lemma 2.2, X{O e M\{o}:

* -. *([O.1)x(O.y)) > 0 ( - where A is the canonical measure of r.

Proof. Let y > 0 be arbitrary but fixed. By (A3), there exists a positive

integer k such that P(r([O,1)x(O,y/k)) =0) > 0. Note that the random

@4m
°

:......



7

variables nj([i-l,i)x(O,y/k)), i 1.,k, are independent by (A3), (A4), and

are identically distributed by (Al). These together with (A.2) imply that

P{rj([O~l)x(O,y)) = 0} P{n([O~k)x(O.y/k)) = 0)

= P{n([i-l~i)x(0.y/k)) =0. i = 1..k}

= P k(rp([O,l)x(O~y/k)) =0) > 0. 0

Write M 1for the collection of integer-valued locally finite measures \P on

[l.-~) such that \P{1) > 1, and A1its usual a-field. Denote by 6 , Z 6 [1,-2),

and 6 ,(x,y) E IR x IR, the Dirac measures on [1,co) and IR x R
(x.y), ++

respectively. Write (PR x IR+) x 14 for the product space of ~R x IR 'and M and
+ 1+ 1'

introduce a mapping Q2 on (LR x O ) x Minto M4\{o} by

(3.1) (2: ((x~y),,) - la6 xy~

where (x~y) 6 [R x IR+ and 2a F_ F M (2 is obviously one-to-one and
+ 1Z. 1V

measurable. Further, since (IR x 1R x Mand M\{o} are both Polish (cf. [13],

15.7.7), Kuratowski's Theorem (cf. [16]) implies that (2 maps measurable sets to

measurable sets. Write A for the range of (2.

Lemma 3.4 Suppose rn is a point process satisfying the conditions (Al), (A3),

and (A4). Then ni is infinitely divisible, and the canonical measure X

concentrates on A, i.e. X(Ac 0.

* Proof. Since X is a measure on M\{o}, it is understood that all set operations

are performed on this space. It is easily seen that A ±A nl B where A is the

I. eent{~ M\o}: ({xxIR) =0 for all but one x in IRI. and B the event (0 6

M4\{oj: 0(IRx(O.6)) = 0 for some e > 0}. Since Ac = Ac U (APBc), it suffices to

show that X(Ac) = ;\(Afl~c) = 0. Write Ar = (0 F_ 4\(o} *([k k')( 0 )) = 0
II~ 2n 2

for all but possibly one k in I) where I is the set of integers. Observe that

A mnis monotonically non-increasing in m for each fixed n. fl A nis also
mn m=1 mn

I,.%
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monotonically non-increasing in n, a,.t4 A = n fl Am. Thus
I mn

X(Ac) = X( U U Ac) =lim lim X(AC )
eT n=1 m=1 mn n-c ~-D M

(3.2)
,'T%,e. < lim lir 1. X{O 6 K(o}: 0([ ,.1_- )>0

n=-im jim= iMj 2[ 2n )x( O ' m)) > 0.

-. *[2-- "+)×(O~m)) > 0}.
e'.' ' 2n~

The conditions (A3), (A4) imply that nC[ L, 2==)C~)il n ( +)C)2

2n2 2 n 2n

are independent if i~j, and therefore the right hand side of (3.2) equals zero

by Lemma 2.2. Similarly, since A n Bc C U U {0 6 M\(o}:
m=l n=1

* *([-m.m)x(O,-)) > 0}, it follows from (Al), (A3). (A4). Lemma 2.2, and Lemma

3.3 that

X(A n BC) _ lim lim X{* e M\{o}: *([-m,m)x(0.-)) > 0}

"' =-lim lim log P(n([-m'm)x(O.1 01 O
m-ia n-P

-'"" p2m 1- lim lim log P{([O,l)x(O.-) = } ,
n%-.-.n-p n-co

m-c n-0

concluding the theorem. 10

Lemma 3.5 A measure v on R x PR' satisfying v 0 g = v o h = v for each (T,a)
+ T-.

le R x +R' is a constant multiple of Lebesgue measure.

Proof. It suffices to show that v([a,b) x [cd)) = (b-a)(d-c)v([0.l)x(0.l)),

[ab)x[c d) C IR x R+. Using v o gT V, r e I, it is easily seen that

m k-i k.
v([O.l)x(O.l)) = : v([k-. ) x (0.1))

-k=l m m

= mV([O,I/m) x (0.1))

for each m>1. Thus

"-;v([O jj)x(O 1)) n n- ([O,1)x(0,1))

o" m

......... ...... _..,....... .... . ...... . . . . .- . ... -: .:, ,_ , ,._,, .: .. , , .,.
#' '''.. "'-" . ".-.,.... . . .. "."-.. .. ".".", . , " "."-" -.. " .. "" .- '- # -. . ,-'- ¢.. " "? . ' .j:-'- "' .'." -',
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for each m.n 1. By this and the assumption we have for any [a.b)x[c.d) C R x

IR' that

v([a,b)x[cd)) = v([O,(b-a)d)x(0,1)) - v([O.(b-a)c)x(O.1))

= lim v([O,-)X(O.l))- jim V([O.-)X(O.1))
n/m-K(b-a)d m n/m'-*(b-a)c m

n,m>l n.m>l

= ((b-a)d-(b-a)c) v([O.l)x(Ol))

= (b-a)(d-c)v([0,1)x(O,l)). 0

We now combine our somewhat disconnected discussion to give the following

character izat ion.

Theorem 3.6 A point process q on R x IR satisfies (Al) - (A4) if and only if

it is infinitely divisible, and there exists a probability measure Q on (MI, A)

such that the canonical measure X on n satisfies X = 0 (mxQ)0o - I where Q is

*" defined by (3.1), 0 = -log P(r([O,1)x(0,1)) = O} < , and m x Q is the product

measure of Lebesgue measure m on ER x [R and Q.
4-

Proof. We first prove the "only if" part. Suppose T) satisfies (Al) - (A4).

It follows from Lemma 3.3 that 8 is finite. If 0 = 0, then the result is

trivially true. Assume henceforth that 0>0. For each set E in A1' define a

set function v on Y, the Borel a-field of ER x 1I, by
E+

V E(B) = X o Q(BxE), B e Y.

SE is a measure since X is a measure and Q is one-to-one and bi-measurable.

For each T e IR, write G for the transformation
.r g- K{0} - {0}.

T T'

- It is evident that X o G = X since the former is the canonical measure of the
T

• , d
point process q 0 gr' and r 0 g = q by (Al). Also it is straightforward to

, verify that 0(g (x,y),4) = G0 ((xy),4'). T E ER, (xy) e ER x E.R ' E M6 .T.., +

Hence for each B 6 Y.

6°

U - *,°* t* 4
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0g9(B) X o Q~g (B)xE) X\ o G o C(BxE)

X ; 0 £2(BxE) =E(B).

.h1"s shows that 1; 0 g T = for each T i n [R. One could similarly show that z

h 1 for each cl E 2R using (A2). With these, it follows from Lemma 3.5
F +

tlhl t is a constant multiple of Lebesgue measure m; i.e.

X o a 2NBxE) v LE (B) = Om(B)Q(E), BEYf,

for some constant Q(E) in [0,00]. It is clear that Q(0) =0, and that if {(E

* is a countable collection of disjoint sets in A~l then

Q(JE) = XoQ(BxUJE )/(Om(B))

2 X o l?(BxE .)/(Om(B))

* where BEY is any set for which 0(m(B) < -. Thus Q is a measure. The fact that

9 maps the set ([0,l)x(O,1))xM1 to e~ A: 0([0.l)x(0,l)) > 0}, and that
cI

N(A ) =0 imply that

Q(M 1) = xol(([0,i)x(0,l))XM I)/(Om(fO,l)x(0.fl)))

= XOe A:O([0,l)x(0,l)) > 0)/0

=-log P{q([Ol)x(O,l))=O}J/0=1,

showin~g that Q is a probability measure. The conclusion of the "only if" part

* follows since (3.3) holds for each E in A~~ and B in Y.

* . Having shown the "only if" part, the proof for the "if" part should be

*_J straightforward and hence we only provide a sketch. Suppose q~ is infinitely

divisible and has the structure described in the theorem. Then (Al) and (A2)

hold by virtue of the identities

L (f) =L (fog -T= L (f).

L~ oh() 7 -ThI/ Tr

which follow readily from (2.1). Lemma 2.2(i) implies that

P{1I([0.l)X(0.6))>0} = l-e 0>0,

which, in turn, implies (A3), while (A4) follows easily from Lemma 2.2(ui). El



The following corollary states the relationship between the Poisson
,,,. "

process and the class of point processes satisfying (Al) - (A4).

Corollary 3.7 A point process TI on IR x [R+ is infinitely divisible and has the

canonical measure X=O(mxQ)ofQ-  if and only if r admits the representation

00 K.

i 1(S T Y ) where the (S, Ti) are the points of a homogeneous Poisson
i=i j=1 (i'Tiij)

process C with mean 0, and, for each i, Yij' I<j K i , are the points of a point

process - on [1,-) distributed according to Q, and Ci V 'Y2 ... are mutually

independent.

Proof. Suppose f is a nonnegative measurable function on IR x IR with a bounded

00 K.
support E, and let L) be the point process 2 2 6 ( Conditional on

i=1 j=l 1 13

c(E) = k, where k is any nonnegative integer, the points of " in E are

*. independently and uniformly distributed over E. Thus

L (f) = gexp(-fR x IR, fdw)
p.,. +

00
''""= I P{(E)=k}9(exp(-I I f(SiT iY ij ) J[ (E )= k }

k=O i j

= 2 e- O m (E ) (If e -om(dxdy) Q(dP))k k! ( I E mCE)
•,k=O ME

-J'-f(xyz)\P(dz)
= exp{-Of f(1-e )m(dxdy)Q(dP) }.

ME

The set E in the last expression may now be replaced by IR x P. (without

affecting the Laplace transform), and the expression, after a

change-of-variable (via the transformation 0). equals

exp{-f (l-exp(-,f)X(dO)},

which is just L (f). This completes the proof. 0

94o •. .. . . . . . . . ,*:
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It is obvious from Corollary 3.7 that if each Yi. (in the representation of

7) is degenerate and has only one point which is 1. r is then just a

homogeneous Poisson process on IR x IR'.

4. Point Process Associated with Extreme Observations.

Consider a strictly stationary sequence {f.} indexed by the set of

integers I = Z. For each n > 1. let M(l) > M > . >M n be the ordern n - - n

statistics of . n' and write, for convenience, M for M l).

Throughout this section we assume the existence of a sequence (un}n>l of

* functions on IR = (0,-) with the following properties:

(BI) For each n, un is nonincreasing, left continuous, and such that

lim P{Un(T2)<EI<Un(T I ) }= I .

Tr -.10

2

(B2) For each T > 0, lim P{M n un(T)} = e- T

n nMDefine u- n-- -

Deine u - sUp{T>O: Un(T). It is easily seen that u- (f)<T if and

only if f>un(T). The point process of interest in this section is N which is.. . n

" '" ' J/n'-l(

a point process on [R x R with points (j/nu (f jFI. Many random
+ n j

quantities connected with the extremes of can be studied through N since

(4.1) N n((Ox]x(O,T)) k-i if and only if

(Mk) U r.x>0. 1 T< k [nx].

[nx] Un" u

We shall show in the following that the distributional limit of N

n

satisfies the conditions (Al) - (A4) stated in section 3 provided that { .}

satisfies a certain mixing condition A which we now introduce. Let k and n be

positive integers. For each choice of T1 .  k > 0. and 1 e £ n-l. write

-(n.. k) maxfP(AnB) - P(A)P(B)I: Ae. s ,

B69s+R n 1 s < n -e}

where F. . is the a-field generated by the events (ES u n(Tm)) i<s<j. l<m<k.

'fI,
op .

04'. ''v'z'"""" "'<.'' : " :¢.?,": :. -:"": , .. ,.-.-..." " ." .: v , :-""'. """.'''

• - -w ,a, dl,~dlild~, i i~ dih , di i "
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The condition A is said to hold for ([j} and the sequence {u} if for each
.1 n

choice of k. and T Tk a(n. [Nn]: > I .T T 0 as n - for each X

(0,I, where [x] denotes the integer part of x.

The condition A is obviously weaker than the a-mixing condition, and in

practice A can be verified more easily than a-mixing. On the other hand, the

condition A is potentially stronger than some distributional type mixing

conditions (cf. [10]. [15]) that are useful in the context of proving extrenal

types theorems. We use the condition A in this paper since it appears to be

most convenient for our purpose. The way in which A can be modified or further

weakened should become evident.

Lemma 4.1 Assume that the condition A holds for ( '} and {u}. Then for each

0 < a < 1 and r > 0.

(4.2) lim P{M u (T)} = e-OF

n-ow [cm] -n

where, here and hereafter, [y] denotes the integer part of y. It can be

derived from this that for r>O and a1>G >0, u (r) > U (a T) for all large
12 [n/aui n 2

n.

Proof. (4.2) follows readily from some well-known results (cf. [10]. [15]).

For a1 >02 1.
12 :i lirm P{M[n/] I  Un(oIT)} = eT, and

-T

(4.3) lim P{Mrnl 1urn/ 2](r)} = lim P(M < u (r))
n- 1 JL,1[/c2 n-w [ 0 2n n

1 2 2

-02 T/Y1

=lim P(M < U (r)} = e >
02 n

i
I

in

where the first and second equality of the second equation follow,

respectively, from the facts

-"

d . ' '" # " "" " "' z . ' " , , - . . , . " ''' - - . " ' , - " . . " . . . - . ," . . '' '"' ' -

''p.- . % - , % " "."- . . " . - . % " . -. % " , - , , . .. .. - . " -. . , , -
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02

urn P<-ax(f: l< [n./a] - 2  u

n.-0 1 2 [-

and {[n/u 2}: n>l} = (n>l}. (4.3) implies that u [n/2](T) > Un(alr) for large
-[. a2]

" n. This conclusion holds similarly for other choices of arI and a2 such that

" 1 >C 2 >0. 0

Lemma 4.2 Assume that the condition A holds for {[.} and (u Let k.m be

positive integers, s ij 1 < i k. 1 < j < m. be nonnegative integers, and

x. ,r., 1 < i k, 1 < j < m, be nonnegative reals. If either

P{Nn([O.axi) x (0,T S - .. .i < k. I < j < m}

or
P{Nn([O.x-) x (O.crr1)) _ s.<.. 1 . i < k. 1 < j < m}
Ii n i

converges for each o in some interval (ae. ), where ae>l. then both

probabilities converge and have the same limit for each a (G. Ou).

Proof. We shall only prove the lemma for the case k=m=l. since the general

situation is similarly proved. Also, for clarity of presentation, the

arguments in this proof are phrased in terms of the order statistics (cf.

(4.1)). In other words, we shall show that the convergence of either P{M is ) <

U (CrT)) or P{Rsj K( Un(T)} for each a e (a.a) implies the convergence of the

n [a] nPa

other to the same limit for each a e (a .u). where s is an arbitrary positive

integer. First assume that P(M < u (cT)) converges for each c in (o.ru)'
n

For a and a' with ar < C < a' < C
u

llmsup F (M(S) u (-r)} liMSUP J()<uT).%j..,'"" l msUn_ ' c'n] -  Un r) =  limU4 ['n/o']] -  U[n/a' ] r }

(4.4)

= limsup P{(Ms) n u ,](r)} lim P{(MS) u }(aT)
*.'':n-4D n-

Here the first equality follows from the identity {n: n > 1} ([n/o']: n > 1},

the second equality holds since 0 n - [c'[n/a']] < r and P{M Ic >

J%

do

. . .. . . . . . . . . . . - ll ilI I l ... .-. .'
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.U ,(T)}--.jO, and the inequality follows from Lemna 4.1. Similarly, for c and

Ci' with o ( C'' < C < a

(4.5) liminf (( S).n (k) u u(T)} lrn P( s u (cr)}.

By (4.4) and (4.5), for c and a. 1 < i 4, with c < CI < 02 < < C3 < 4 <

limsup P {M(s) <()) U liMinfn-S) PsU T) l -r nn(s)
n-c 1G ] n -40 n un(ci3r) n Pdn > un(CiT)}

<r li ( s ) liminf PMs T)

U--pOn(rj n--X [Cijn] n ~r}

But

liminf P-M( s )  u (-)} - limsup PIM (s )  < Un(T))n-4- [Grn] nn-100 t c [ n]  - n
[pn(s) u ( T) - PM(su ) < U (T)

limsup ( [ <  (r)} - < )

c[ n [4n] -
S-(cP-cI 1 )'r

< lim P {M [> ) U ( )} : 1 - e

which tends to zero if a4 - 01 -*0. This shows that lim PM(s ) < un('r)} isi n-
continuous at . Since for c,o 1, and ci2 with a. I < a < o2 < u,

""lim P(M( s )  U U(9IT)} liminf P(M(s)  (T) IMU JS < T

-. n - l [nf] u (r)} - limsup p{M(s)n [] - r)}
"-ic n-

-nlim P(M(s) u (a T)}

by (4.4) and (4.5). it is easily seen that P{M ( s )  u (T)) converges and has
[an] n

the same limit as does P M(S) <u u(0-r)}.

Suppose now t [o ) Un(T)} converges for each a in (or ori). Using

arguments similar to the ones in getting (4.4) and (4.5), it can be seen that

for ,cI and g with a < C < i < < cu.1 2 e 1 2 u

lim P[M ( s )  
U Un(T)} < liminf P{M s) Un()} limsup P(M ( s ) < Un (UT)}n '[c2 n] nn-P) n n--P -n n

" < lim P(M (s)  < } T)

n- [Cln ]  U n

As before, the difference between lim PKM ( s )  < u(r)} and lim K,,[(s) <
n-"= [ain] n-O [c2n]

Un(T)) tends to zero as 01 and c2 tend to c. This concludes the proof. 0

V

,I-..:...
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Lemma 4.3 Suppose the condition A holds for {f} and {un}, and that Nn

converges in distribution to some N. Then N satisfies (Al) and (A2). and

P{N([O,I)x(O.6)) > O} =-e -6 0. which implies that N satisfies (A4).

Proof. That N stfis(Al) follows readily from the stationarity of{.}

By Lemma 3.1, N({x}x[R+) = 0 a.s. for each x&R. Similarly, by Theorem 1.1.5 of

[13], there exists a countable set C such tht N([O,)x(T}) = 0 a.s. for each T

e. D:=IR+\C. Thus N([x{r}) 0 a.s., r e D, by (Al). For T < 6 in D,

[O,1)x[-r,6) is bounded and has N-a.s. zero boundary. Thus Theorem 2.3 implies

that N n([O,1)x[r.6)) d N([O,l)x[T.e)). Since lim lim P{N n([O.l)x(0.6)) > 0} =
6--J n-

O.it follows from an application of [2]. theroem 4.2 that

P{N([Ol)(0,6)) > O} = lim P{Nn([OMl)x(O.)) > 0}
-,,im - --6lim PM n > un(6)) = l-e-

n- n

for each 6 in D. and hence, by continuity, for each 6 > 0. This shows (A3).

It is clear from (Al) and (A3) that N([O.x)x(O,T)) < ' a.s. for all xr)O.

Thus by (Al), Lemma 4.2. and [8]. Theorem 3.1. that (A2) holds for N follows

from the convergence in distribution of the random vector (Nn([Oxi)X(OTj))*

1ik, 16 j<m) to (N([O.xi)x(O,T)). l<i<k. l<j<m) for each choice of x.>0.

(-rD, and positive integers k and m. The convergence is easily shown using. J

arguments similar to the ones above and is left for the reader. U

Lemnmta 4.4 Suppose the condition A holds for n( and_ , and that N
n nu

converges in distribution to some N. Then N satisfies (A4).

Proof. We shall prove the claim for k 2. The proof for unrestricted k is

similar, but more complicated notationally. Let Ii = [a Cbi), i=1,2. be

disjoint intervals in IR, and Jj [cj,d)d j=l,2.....m, be intervals in P' IV

sluffices to show that

'"

7"
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2
P{N(IixJj) = Sj, i=1,2. J=l ... m} = iT P{N(IxJ.) = s . j=l .... m}

for each choice of non-negative integers sij. i=1,2. j=l. m. For this

purpose, it is important to note that, by Lemim, 4.4. both I and 12 can be

assumed to be in (0,1] without any loss of generality. Denote by I' the
2

interval [a2+e, b2 ) where e is any non-negative number less than (b2-a2). It

follcws from the triangle inequality that for each n,

2
P{N(IixJj) = si.. i=U,2.j=l. m} -il P{N(I iJj) = s ijj=l-....m}

5

2 gi(n)
i=l

where

.1(n) IP{N(I xJ3 )=s. i=l.2j=l.1...m} - P(Nn(I xJ )=s .i=1. 2 j=l. m

2 l(n ) = P(N n(I =j s ij i .2,j=x..m}

g ( ): P N n (I IxJ =  s ij l2~ 1.....m) nm12} i s2 '- P{Nn(I 1xJ) SIJ.Nn(I2xjj) = s2 .,j  = 1...m}
~3(n) = lPINn(Iix*Jj) = sij.Nn(12xJj) = 2j, j=1 . .m}

-P{Nn(1lxJ.) = si. "'j = 1..m}P{N(12xJj)=s.. =I...

PNn (1 2 j nj) = lsm}I
t(n) =P{Nn(Iix~lj) = Slj.J = 1..m} • P{Nn(I2xJj) = sjJ= 1..m

~~~- P{Nn(1 2 xJ 4 = s2j.j = 1..m}j,

(n) = IP{Nn(IIxJj) = sl, 1j = 1... m}P(Nn(I2 xJj) = s2 .j=l ..... m

- P{N(I 1xJj) : sljj = 1= . m}P{Nn( I2 xjj) = s2 j,j = 1-. m}I.

Since N N, and using the fatt by Lemrma -1 that N satisfies (Al) and (A2),n

"heorem 2.3 and Lemma 3 1 imply that gI(n) and g2 (n) both tend to zero as n

rends to m Write d = miax (d.). arid note, by Boole's inequality, that both
1'j<m j

* j(n) and g.(n) are bounded by P(N ([a2. a2+ x (O.d)) ) 0}. or by P(M[n ]

(d)8, which tends to 1-e by l.emm 4 1. Finally since the condition A h)ld

for (} and ' 1u, g 3 (n) is bounded by a(n,[n1]+l c c d d

showing that g (n) tends to zero as n tends to infinity. Sutma. rizinK the

O hove, we vet

-0
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IP{N(I xJ ) =sij, i=l,2,j=l . m} - IT P{N(I.xj.) = sij -l . m}
".- -Ed~

" _<limsup 2 g i(n) <_ 2(1-e-e)

n- i 1

Letting 6 tend to zero, the result follows. 1

The main result of this paper now follows from Corollary 3.7, Lemma 4.3.

and Lemma 4.4.

Theorem 4.5 Let {~}be a strictly stationary sequence of random variables.

and {u } a sequence of functions on IR+ for which (BI) and (B2) hold. Supposen

the condition A holds for {.} and (un and that the point process Nn

=: 6 -l converges in distribution to some point process N. where N., ~jeI (j/n u ()

n 1

and N are point processes on IR x IR. Then N has the representation

K. 6(Si.TY.9' where (S. .. il are the points of a mean one

i=l j-l i

homogeneous Poisson process on IR x R. ! j K.. are the points of a point.1

process -. on [1.-) with 1 as an atom, - l1 2'. . are identically distributed,

and r are mutually independent.

It is plausible to view the points Y l<j K of -Y. in theij' i' 1 1

representation of N as describing the magnitudes (normalized by u ) of the

members in a cluster of extreme observations of _{f). relative to the largest

observation in the cluster. For the important special case where {if.} is

Si.d.. extreme observations do not cluster, and thus each "Y has only a point

which is I (cf. [12]. Theorem 5.7.2), leaving the Poisson process the only

possible limit for N . See also Davis and Resnick [3], and Rootzkn [19.20] for

further justifications of this viewpoint.

The following corollary shows how Theorem 1 of [14] can be derived from

Fheorem 4F3

'g'r,
S-.' *P" " - " " ' . " " '. ." " " . . . '.'p ' *-*w~ - w . • % - , . • • • . " ' , . "* " ,"S - . • ' " " .% ' ' "" - . ' , • . • • " " , " . " o " " %"* " - " . " • " ,- . " " .. % ° • . , , . 1



Corollary 4.6 Suppose {ff} is a-mixing and there are constants a >0 and b
n n

such that P{M n < anx + bn} _* exp(-eX). x6R. Define n to be the point process

on R x JR with points (j/n. (fj-b n)/an) jcI. If Nn converges in distribution

to some N, where the weak convergence takes place in M(IR x [R) (cf. Section 2).

N has points (S., -log(TiY ij)). i0l, Ij<K i.. where the (Si .T.) and YiJ are as

described in Theorem 4.5

Proof. Let u n(T) = -a nlOgT + bn, T>0. n>l. {Un } obviously satisfies (BI) and

(B2) for {[j}. If N converges in distribution, in the space M(R x IR), to some

N, then by the continuous mapping theorem Nn := 2 6 -1

S 5 (j/nexp(-(f _b)/a)) converges in distribution to some N, as random

j jn n

elements in M(R x P+). Since a-mixing is stronger than the condition A,

Theorem 4.5 implies that N has the representation 1 1 6 (STiY), which, again
i j i

by the continuous mapping theorem, concludes the corollary. 0

'To complete this characterization, Mori [14] showed that any point process

_i on [1,-) having atoms at 1 can be a "cluster process" in the representation

of N (cf. [14], Theorem 2). Thus, in view of the proof of Corollary 4.6, the

chatacterization of N in Theorem 4.5 is also complete.
n

Finally, it is interesting to interpret the above point process

convergence in terms of extreme order statistics.

Theorem 4.7 Assume that the condition A holds for { .} and (un}. N converges

____-__{{u. N

in distribution if and only if P{M d < (r.) 1 < i < m} converges for each
n n i

choice of T. > 0, k. 1 . 1 < i < m, m > 1. and lim lim P{M(k) < u (r)} I for
1 .- n-4 n n

each T > 0, where M(k) is the kth maximum of
n

*, . .. .;. .- .- . - . . . . ,. . . . . -. , - . .. . ' ' . .. .. '-.F '. . .. .. ..... . ... ..... ".... ....-
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Proof. Suppose first N converges to N. By the definition of u and Theorem

2.3 (cf. Lemma 4.3),

nlim P{Mnd < U(Ti), 1 < i < m}

n in-.4o

= P{NC[O,1)XCO.T i ) k . 1 < MI.

Also it is clear that N([O,l)x(0,)) < o a.s. and thus the only if part

follows. Next suppose the converse is true. The assumption I lim lim Pm (k)

k-oo n-w{M

U(r)} = lir lir P{Nn([O,1)X(O,r)) K k}, T > 0, implies that the family (Nn:
k-- n-

n > 1} is tight (cf. [8]. Lemma 4.5), and hence for every infinite subsequence

I' of the set of positive integers, there exists a further subsequence I''
0

along which N converges in distribution to some N'. It suffices to show that
n

the distribution of N' is independent of the choice of ' and I''. N'. as a

limit of N , has the representation obtained in Theorem 4.5, and therefore its
n

distribution is determined by the set of probabilities

P{N'([OI)X(O,Ti)) _ ki- I, 1 < i m)

(k.
=lim P{M n i u n(T.), l~i~in}. T9'0. k.>l, 1 < i < mn, m)1,

which are clearly independent of I' and I''. This proves that N converges in

distribution. 0
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